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Proper  classification  of  action  potentials  from  extracellular  recordings  is  essential  for  making  an  accurate
study  of neuronal  behavior.  Many  spike  sorting  algorithms  have  been  presented  in  the  technical  liter-
ature.  However,  no  comparative  analysis  has  hitherto  been  performed.  In our  study,  three  widely-used
publicly-available  spike  sorting  algorithms  (WaveClus,  KlustaKwik,  OSort)  were  compared  with  regard
to their  parameter  settings.  The  algorithms  were  evaluated  using  112  artificial  signals  (publicly  avail-
able  online)  with  2–9  different  neurons  and  varying  noise  levels  between  0.00  and  0.60.  An  optimization
technique  based  on Adjusted  Mutual  Information  was  employed  to  find  near-optimal  parameter  settings
for a given  artificial  signal  and  algorithm.  All  three  algorithms  performed  significantly  better  (p  <  0.01)
with  optimized  parameters  than  with  the  default  ones.  WaveClus  was  the  most  accurate  spike  sorting
Clust
lustaKwik
utual information
icro-recording
euronal activity

algorithm,  receiving  the  best evaluation  score  for  60%  of  all signals.  OSort  operated  at almost  five times
the  speed  of  the  other  algorithms.  In terms  of  accuracy,  OSort  performed  significantly  less  well  (p < 0.01)
than  WaveClus  for signals  with  a noise  level  in the  range  0.15–0.30.  KlustaKwik  achieved  similar  scores
to  WaveClus  for signals  with  low  noise  level  0.00–0.15  and  was  worse  otherwise.  In  conclusion,  none
of the  three  compared  algorithms  was  optimal  in general.  The  accuracy  of  the  algorithms  depended  on
proper  choice  of  the  algorithm  parameters  and  also  on  specific  properties  of  the  examined  signal.
. Introduction

Classifying neuronal action potentials is a technical challenge
hat is a prerequisite for studying many types of brain function.
ccurate detection of the activity of individual neurons can be dif-
cult to achieve due to the large amount of background noise and
he complexity in distinguishing the action potentials of one neu-
on from others. Even if the activity of several neurons is recorded
ith only a single electrode, spike sorting allows the researcher to
easure the activity of the individual neurons separately. Although

here are many spike sorting software packages (including com-
ercial packages), we are not aware of any objective comparison
f them that discusses adjustments to their parameters and their
mpact on spike sorting accuracy.
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1.1. Spike sorting algorithms

Most unsupervised spike sorting algorithms employ three prin-
cipal steps (Fig. 1). In the first step, spikes are detected with an
automatic spike detection method. In the second step, a set of fea-
tures is extracted from each spike – principal component analysis
(PCA) in Adamos et al. (2008) or the wavelet transform (Quiroga
et al., 2004) are usually used in this step. Finally, the spikes rep-
resented by their features are assigned to different neurons by an
unsupervised learning algorithm (e.g., a clustering algorithm). We
should mention that these steps are sometimes combined (Franke
et al., 2009; Herbst et al., 2008), but most spike sorting algorithms
handle the three steps independently.

We  focus on stages 2 and 3, as there are already a number of
comparative studies in the field of spike detection (Lewicki, 1998;
Adamos et al., 2008; Gibson et al., 2008), and because the studied
spike sorting algorithms are modular, thus allowing the researcher
to choose freely which spike detection algorithm to use. The spike

detection part was omitted by providing the algorithms with ref-
erence spike times.

The idea of recording multiple neurons and then grouping the
action potentials by the source neuron is not new. It was first

dx.doi.org/10.1016/j.jneumeth.2011.10.013
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in 1998, but did not include any quantitative experiments, and
Fig. 1. Three principal stages of unsupervised spike sorting algorithms.

roposed in the 1960s (Gerstein and Clark, 1964), and since then
umerous approaches to the problem have been developed.

Given a lower-dimensional representation of the spikes and dis-
egarding the times at which the spikes occurred, the spike sorting
roblem reduces to a clustering problem. Therefore, most of the
etter known clustering algorithms have been applied to spike
orting: k-means clustering (Salganicoff et al., 1998), hierarchical
lustering (Fee et al., 1996), superparamagnetic clustering (Quiroga
t al., 2004), as well as mixtures of Gaussians (Sahani, 1999) and
ixtures of t-distributions (Shoham et al., 2003). The method used

n Fee et al. (1996) grouped multiple classes according to whether
he interspike interval histogram of the group showed a significant
umber of spikes in the refractory period.

Takahashi et al. (2003a,b) combined independent component
nalysis (ICA) and the efficiency of an ordinary spike sorting
echnique (k-means clustering) to solve spike overlapping and non-
tationarity problems of tetrode recordings with no limitation on
he number of single neurons to be separated. Adamos et al. (2010)
ttempted to resolve overlapping spikes by introducing a hybrid
cheme that combines the robust representation of spike wave-
orms to facilitate the reliable identification of contributing neurons
ith efficient data learning to enable the precise decomposition of

oactivations.
Fee et al. (1997) described a procedure for efficiently sorting

pikes in the presence of noise that is anisotropic, i.e., dominated by
articular frequencies, and whose amplitude distribution may  be
on-Gaussian, such as occurs when spike waveforms are a function
f the interspike interval. Support vector machines were used in
ing and Yuan (2008) to solve the superposition spike problem.

Herbst et al. (2008) combined the spike detection and classifi-
ation steps into a single computational procedure using a Hidden
arkov Model framework. Detection and classification was also
erged in Franke et al. (2009),  where a method of linear filters was

nspected to find a new representation of the data and to optimally

nhance the signal-to-noise ratio. By incorporating direct feedback,
he algorithm adapted to nonstationary data. Delescluse and Pouzat
2006) used Markov chain Monte Carlo in order to estimate and
Fig. 2. Citation histogram of spike sorting algorithms as of January 2011. The
approaches are tagged by an asterisk if the source code is available.

make use of the firing statistics as well as the spike amplitude
dynamics of the Purkinje cells. Online spike-sorting approaches
suitable for HW implementation were addressed in Gibson et al.
(2010) and Rutishauser (2006).  Adamos et al. (2008) performed a
comparative study focused on PCA using synthetic data on which
correlated and white Gaussian noise processes are superimposed,
and the KlustaKwik (Harris, 2000) clustering approach was used.
Wang et al. (2006),  proposed a robust approach employing an
automatic overlap decomposition technique based on the relax-
ation algorithm that required simple fast Fourier transforms. Hulata
et al. (2002) used a simple k-means technique for spike sorting
while applying the wavelet packets decomposition framework in
an extraction step.

The following approaches dealt with the quality of the spike
sorting process. Schmitzer-Torbert et al. (2005) introduced two
measures: L-ratio and Isolation Distance. The two measures quan-
tified how well separated the spikes of one cluster were from other
spikes. Joshua et al. (2007) described the isolation score, which
measured the overlap between the noise (non-spike) and the spike
clusters. The measure of Tankus et al. (2009) was  based on visual
features of the spike waveform and an automatic adaptive algo-
rithm that learned the classification by a given human and could
apply similar visual characteristics for classifying new data.

1.2. Comparative scheme

This paper describes a comparative analysis od the three most
cited spike-sorting approaches with a publicly available source-
code: WaveClus (Quiroga et al., 2004), OSort (Rutishauser, 2006)
and KlustaKwik (Harris, 2000). The citation index was used as a
measure for selecting the algorithm – see Fig. 2. Emphasis was put
on involving one algorithm (Rutishauser, 2006) that can be used for
real-time analysis.

The papers on WaveClus and KlustaKwik did not make direct
comparisons with any other spike sorting method. They merely
made comparisons between different versions of the same algo-
rithm. OSort was  compared with both methods, but from the
perspective of online spike sorting (Rutishauser, 2006). We  are
convinced there is a need to evaluate them within a common frame-
work, in order to determine which one to use for a specific task.

Lewicki (1998) presented an extensive review on spike sorting
dozens of new algorithms have been proposed since that review
appeared. Gibson et al. (2008) compared several spike detec-
tion and feature extraction methods, but they did not include a
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Table  1
Summary of the properties of each spike sorting algorithm.

WaveClus KlustaKwik OSort

Features Wavelet transform PCA Raw data points
Clustering method Superparamagnetic clustering AutoClass Template matching
User-tunable parameters 20 10 2
Real-time use No No Yes
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automatically chooses the number of mixture components. PCA
is used to extract spike features for the clustering and a penalty
term for selecting the number of clusters is implemented. The
penalty is based on the ability to specify Bayesian information con-

Table 2
List of parameters impacting the spike sorting accuracy for each algorithm. The
parameter names were taken directly from the original source code of each algo-
rithm author.

WaveClus

force auto Automatically force membership of spikes
assigned to noise cluster using template
matching

inputs Number of wavelet coefficients to use as
features for clustering

KNearNeighb Number of data points used for the nearest
neighbors interactions in the SPC

min  clus stop Minimum size of a cluster (cluster will be
deleted if the number of spikes it contains is
lower than this value)

mintemp SPC minimum temperature – a lower
temperature value groups all data into a single
cluster, while higher values allow the data to
split into more clusters

scales Number of wavelet decomposition levels used
SWCycles Number of Monte Carlo iterations used by SPC
template type Type of template matching method used –

template matching is used for spike sorting
speed up in the case of large number of spikes
or  for assigning spikes in the noise cluster to
the existing clusters (if force auto is set)

KlustaKwik
noDim Number of PCA dimensions used for clustering
MinClusters The random initial assignment will have no

less than MinClusters clusters. The final number
may  be different, since clusters can be split or
deleted during the course of the algorithm

PenaltyMix Amount of Bayesian information content (BIC)
or  Akaike information content (AIC) to use as a
penalty for more clusters. Default of 0 sets to
use all AIC. Use 1.0 to use all BIC (this generally
produces fewer clusters)

OSort
minNrSpikes Minimum size of a cluster (cluster will be
Open source Yes 

GUI  available Yes 

Version  tested 2.0 

omparison of the clustering algorithm, because the goal of the
aper was only to reduce the data for hardware implementation.

In summary, very few quantitative comparisons of spike sorting
ethods have been made, and there are no standard criteria for

valuating them. We  propose in this paper an evaluation frame-
ork aimed at providing a fair comparison of spike sorting methods

n more optimal terms.

. Materials and methods

The objective of the study is to compare the three most widely-
sed publicly-available spike sorting algorithms (WaveClus,
lustaKwik, OSort) with regard to their parameter settings. We
bserved that even a small change in the parameters of a spike
orting algorithm may  have a dramatic impact on their accu-
acy. Therefore a comparison between spike sorting algorithms
nd non-optimal parameters could be biased. To overcome this
eakness, we employ an optimization technique on artificial sig-
als to find near-optimal parameter settings. Using these settings,
e compared the algorithms on various types of artificial signals,

ocusing on single-channel recordings (similar to extracellular sig-
als recorded using a single micro electrode).

.1. Spike sorting algorithms

The most important properties of all three spike sorting algo-
ithms selected in the previous section are summarized in Table 1.
here follows. A more detailed description of the algorithms that
ave been used follows.

.1.1. WaveClus
WaveClus is an unsupervised spike detection and sorting algo-

ithm that combines the wavelet transform (localizing distinctive
pike features) with superparamagnetic clustering (SPC), which is

 method used in statistical mechanics (Quiroga et al., 2004). It
nables clustering of the data without assumptions such as low
ariance or Gaussian distributions. In the first step, spikes are
etected with an automatic amplitude threshold on the high-pass
ltered data. In the second step, a small set of wavelet coefficients

rom each spike is chosen as the input for the clustering algo-
ithm. Finally, SPC classifies the spikes according to the selected
et of wavelet coefficients (Quiroga et al., 2004). WaveClus is one
f the most widely-used spike sorting algorithms, and it has a large
umber of parameters for fine-tuning the method (see Table 2 for
etails). WaveClus version 2.0 was used for the comparison.

.1.2. OSort
OSort is an implementation of a template-based, unsupervised

nline spike sorting algorithm. The estimation of the number of
eurons present, as well as the assignment of each spike to a neu-
on, is based on a distance metric between two spikes (Rutishauser,

006). Based on this distance, a threshold is used: (i) to decide how
any neurons are present and (ii) to assign each spike uniquely to

 neuron cluster, or to a noise cluster if unsortable. The threshold is
alculated from the noise properties of the signal and is equal to the
Yes Yes
Yes Yes (Mclust)
1.6 2.1

squared average standard deviation of the signal, calculated with a
sliding window. The main advantage of OSort over its competitors
is that it can be used online, thus enabling realtime spike sorting
during an experiment (Rutishauser, 2006). OSort version 2.1 was
used for the comparison.

2.1.3. KlustaKwik
KlustaKwik is a software for unsupervised classification of

multidimensional data. It is employed in the MClust toolbox,
which enables both manual and automatic spike sorting on single-
electrode, stereotrode and tetrode recordings. KlustaKwik fits a
mixture of Gaussians with unconstrained covariance matrices and
deleted if the number of spikes it contains is
lower than this value)

correctionFactorThreshold Value correcting a signal noise estimate used
as a clustering threshold
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Fig. 3. Waveforms of 9 real spikes, used for artificial s

ent (Cheeseman and Stutz, 1996). KlustaKwik allows a variable
umber of clusters to be fitted. The program periodically checks if
plitting any cluster would improve the overall score. KlustaKwik
lso checks to see if deleting any cluster and reallocating its points
ould improve the overall score. The splitting and deletion features

ften allow the program to escape from local minima, reducing
ensitivity to the initial number of clusters, and reducing the total
umber of starts needed for a data set (Harris, 2000). KlustaKwik
ersion 1.6 was used for the comparison.

.2. Test data

For the purposes of comparison we used two  sets of arti-
cial data: previously published data (Quiroga et al. (2004),
eferred to as QQ after Quian Quiroga) and data generated by
ur own method (referred to as JW,  publicly available online –
ttp://nit.felk.cvut.cz/∼wildj1/ssc). Both of these data sets were
btained simulating extracellular signals recorded using a single
icro electrode.
Our artificial data was generated by superimposing real spikes

t random times onto a noise background. Since several aspects
f signals affect spike sorting, we used a wide range of signals of
ifferent characteristics (signal noise level, number of neurons) to
aximize the objectivity and discriminability of our results.
A total of 9 real spikes (64 samples) shown in Fig. 3 were picked

anually from extracellular tungsten micro-electrode recordings
uring a Deep Brain Stimulation operation from the sub-thalamus
uclei (STN) of 5 patients. Each spike was deduced from a different
osition in the STN, thus eliminating the possibility of extracting
wo separate spikes of the same neuron.

To generate a signal with n neurons, spikes 1. . .n  were used
s a template for each neuron. Each template was  first scaled
o 75–125% (uniform distribution) of its maximal amplitude to

imic  the different spatial distance from each neuron to the elec-
rode and was placed at random positions in the signal, while

aintaining a neuronal refractory period of 3 ms.  The contribu-

ion of different neurons was independent, such that spikes of
ifferent neurons might have coincided with each other in the sig-
al, simulating the situation of several neurons firing at the same
ime.
generation. Each spike represents a different neuron.

The noise background for longer signals (60, 960 s) was  gener-
ated in the same way  as for the QQ data (Quiroga et al., 2004) using
over 2000 different spikes (some of which might be from the same
neuron), thus simulating the activity of many distant neurons in
the brain. For shorter signals (20 s), a spike-less part of a raw signal
recorded from STN was used as a noise background to approximate
real signals more closely. The noise was then scaled, so that its stan-
dard deviation � lies within the range, and was then superimposed
on the previously generated signal to get the final artificial record.

Twenty-two QQ signals (60 s) and another 90 JW signals with
2–9 neurons generated using the described procedure were used
to evaluate the spike sorting algorithms on a large variety of sig-
nals with different properties. The JW signals were split into three
groups according to their length – 40 short JW signals (20 s), 40
long JW signals (60 s) and 10 very long JW signals (960 s). The sig-
nals with the same number of neurons differed in the standard
deviation of the noise that was  superimposed on the signal ele-
ment. However, as it was  very difficult to estimate (and compare)
the standard deviation of the noise component in the case of real
signals, all the JW and QQ data was labeled using a straightforward
noise estimation method (see Section 2.3).

2.3. Noise level estimation

The noise level nl was defined as the reciprocal value to the
signal-to-noise ratio SNR (Smith, 1999)

nl = 1
SNR

=
(

Anoise

Asignal

)2

(1)

where Asignal represents the root mean square (RMS) amplitude
calculated from all the spikes extracted using spike detection, and
Anoise accounts for RMS  computed from the rest of the signal. As the
estimated noise level was  normalized, it was easier for comparison
across signals with different amplitude ranges, as opposed to stan-
dard deviation. An inevitable drawback of the method described
here was  that the estimation was slightly biased as, in theory, Asignal

had to be calculated only from the useful signal (spikes), whereas
in the real case the spikes themselves were corrupted by noise.

For illustration purposes, Fig. 4 depicts the same 250 ms  long
signal with four different noise levels (0.05, 0.15, 0.25, 0.35). On

http://nit.felk.cvut.cz/~wildj1/ssc
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ig. 4. Example of the same 250 ms-long signal with different noise levels ranging f
o  a different neuron and are shown in greater detail on the right side – in the case o

he right side of each signal there is a detail of two spikes (marked
n the signal by a triangle and a circle), each belonging to a differ-
nt neuron. This is an example to illustrate of how much the noise
ffected the shape of the spikes.

.4. Performance rating function

In order to asses the accuracy of different spike sorting algo-
ithms and to provide an objective function for optimization, a
erformance measure was needed. As the experiments were per-
ormed using artificial data, the true clustering of the spikes was
vailable. In machine learning research, many measures have been
roposed for this type of clustering evaluation task (Warrens, 2008;
inh et al., 2009, 2010), and some of them have already been used

or spike sorting evaluation (Kretzberg et al., 2009; Gasthaus, 2008).
ecently, Vinh et al. (2010) showed that Adjusted Mutual Infor-
ation (AMI) had the best properties among all these clustering

valuation measures, so this measure was used for the evaluation.

AMI  is an information theoretic measure which usually provides

 value between 0 and 1. The value is 0 if the clustering provides
nformation about the true clustering just by chance, and it is 1 if all
nformation is revealed, meaning that the two clusterings are the
.05 to 0.35. The spikes marked in the signal by a triangle and a circle each belonged
her noise level at 0.25 and 0.35, a new noisy spike could be misleadingly detected.

same. Hence, AMI  can be considered as the ratio of true information
in a spike sorting result. Several AMI  values and their corresponding
clustering are shown in Fig. 5.

2.5. Spike sorting parameters

All of the spike sorting algorithms discussed in this paper have
a number of parameters (OSort – 2 parameters; KlustaKwik – 9
parameters; WaveClus – 13 parameters) that can be adjusted in
order to improve the spike sorting accuracy. However, it was very
difficult to set these parameters correctly using manual methods.

Although all the parameters were documented, it was an
almost impossible task to find out how to operate them so that the
algorithm would perform better on a given signal. The parameter
search was  thus formulated as an automatic optimization prob-
lem: given a set of algorithm parameters x = {x1, x2, . . . , xn}, find
a solution for arg maxxf(x), where the f(x) objective function is the
value of the performance rating function (the AMI  score) for the

spike sorting results obtained with parameter vector x. As artificial
signals were used in this study, the AMI  could be calculated for the
parameter space and the optimal solution could be identified by an
exhaustive search. Gradient descent and genetic algorithms were
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ig. 5. Several clustering results with their corresponding AMI  values. The correct c
op  on the right, one cluster is further split, so AMI  is reduced. At the bottom on th
ight,  there is random clustering, so the AMI  value is zero.

lso considered, but the objective function changed significantly
ith only a small change in the parameters, so only an exhaustive

earch guaranteed finding the global optima.
While employing the exhaustive search, only some of the algo-

ithm parameters proved to have an impact on the spike sorting
ccuracy. The Table 2 summarizes the names of these parameters
or all three algorithms. A complete annotated list of all parameters
s available online at http://nit.felk.cvut.cz/∼wildj1/ssc or at each
lgorithm author’s website.

In order to make a fair comparison between algorithms with dif-
erent numbers of parameters, all signals were split into two  parts.
he first part was used for optimization to find the ideal parame-
ers, and the second part was utilized to evaluate the spike sorting
ccuracy with these parameters.

.6. Technical equipment used

All calculations and statistical analyses were performed using
atLab (Mathworks, Natick, MA). The spike sorting results for the

ifferent algorithms were calculated using a Dell Precision work-
tation running 32-bit Linux Mint with a 2.13 GHz Intel Core 2 Duo
6400 2.13 GHz and 2 GB of DDR2 RAM.

.7. Statistical methods

For each artificial signal the AMI  scores were calculated for
ach spike sorting algorithm, using either optimized or default
arameters. For the spike sorting evaluation, the signals and their
orresponding AMI  scores were grouped according to the algorithm
sed and the signal noise level. Each group was  visualized as a
implified boxplot showing the median and the lower and upper
uartiles. The range between these quartiles is referred to as the
pread. Differences between group medians were assessed using

he two-sided Wilcoxon signed-rank test. Bonferroni corrections
or multiple comparisons were applied whenever appropriate.

For the comparison between the optimized parameters, and
he default parameters the AMI  scores were grouped according to
ing is presented at the top on the left with different shapes for each cluster. At the
, the number of clusters is correct, but there is a wrong split. At the bottom on the

the algorithm and parameters that were used (either optimized
or default). For visualization, the simplified boxplots were used as
described above. Significant differences between the medians of
the groups were assessed in the same way  as for the spike sorting
evaluation, using the two-sided Wilcoxon signed rank test.

3. Results and discussion

The algorithms were compared in two  main aspects. First, the
spike sorting accuracy was measured with AMI (one AMI score for
each signal and algorithm). The results correspond to the evaluation
part of the signals, unless otherwise stated. Second, the speeds of
these algorithms were compared to give some impression of the
number of spikes that can be processed within a reasonable time.

3.1. Optimized parameters

As was already discussed in Section 2.5, the parameters were
optimized on one part of the signal and evaluated on the other
half. It was important to see whether this optimization really
yielded better results than the default parameters of the algorithm.
Fig. 6 shows the spike sorting accuracy results using near-optimal
parameters in comparison with the results employing the default
parameters. JW short, long and QQ signals with noise levels rang-
ing from 0.0 to 0.6 were used for this comparison. Although the
spread of the AMI  values was  quite high, mainly due to the noise
level diversity of signals used, it could be clearly seen that the opti-
mization improved all three algorithms (p < 0.01).

3.2. Spike sorting accuracy

Our main assumption was that increasing noise levels have a
negative effect on spike sorting accuracy. We  therefore present our

results depending on noise levels. Fig. 7 shows the spike sorting
accuracy of WaveClus, KlustaKwik and OSort on short (10s) JW
signals with noise levels ranging from 0.0 to 0.6. For signals with
noise level between 0.00 and 0.15, WaveClus was the most accurate

http://nit.felk.cvut.cz/~wildj1/ssc
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Fig. 8. Performance of spike sorting algorithms using long (30 s) artificial JW and QQ
signals with noise levels binned and optimized parameters. The y-axis represents
the AMI  score of each algorithm along with its spread. Symbol ** indicates that the
medians of the marked boxplots are significantly different (p < 0.01 corrected for 3
MI  score while using optimized parameters and while using default parameters).
ymbol ** indicates that the medians of the marked boxplots are significantly dif-
erent from zero (p < 0.01).

lgorithm, with a median AMI  of 0.7. However, because of its large
pread the difference between WaveClus and KlustaKwik or OSort
as not significant.

With added noise, the median AMI  of all respective algorithms
ecreased, with both WaveClus and KlustaKwik proving to be sig-
ificantly better than OSort (p < 0.05 and p < 0.01 at noise level
.15–0.30), both having a better AMI  score than OSort for 80% of
0 s signals within the respective noise level range. For signals with
oise levels above 0.30 all three algorithms had very poor accuracy,

ndicating that signals with such a high noise level were beyond
heir capabilities.

Fig. 8, which depicts the same experiment as Fig. 7, only with
onger JW and QQ signals (30 s), gave us somewhat similar results

or WaveClus and OSort. WaveClus performed best in all cases,
hough it was significantly better (p < 0.01) than both of its com-
etitors only for noise level 0.15–0.30 (it had a better AMI  score for
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ig. 7. Performance of spike sorting algorithms using short (10 s) artificial JW signals
ith noise levels binned and optimized parameters. The y-axis represents the AMI

core of each algorithm along with its spread. Symbols * and ** indicate that the
edians of the marked boxplots are significantly different (p < 0.05 and p < 0.01,

orrected for 3 comparisons).
comparisons).

89% of the respective signals). KlustaKwik was significantly better
than OSort for noise level 0.00–0.15, though with higher noise levels
KlustaKwik had a larger spread than OSort. Again, noise level above
0.30 was  too high for the algorithms to give reasonable results.

Some spikes were visually investigated in order to explain the
effect of the noise levels. Judging from Fig. 4, the spike shape (in this
case) remained almost unchanged for noise levels 0.05 and 0.15,
but at 0.25 and 0.35 the spike shape did not seem like the shape at
0.05. This had a direct negative effect on the spike sorting accuracy
of OSort, as shown in Figs. 7 and 8, in comparison with WaveClus,
because OSort used raw spike shapes (without any filtering) and a
simple distance measure for sorting.

3.3. Spike sorting time complexity

In a real world scenario, the speed of an algorithm may be of con-
siderable importance. For example, if a certain algorithm can be run
online, it will help researchers to gather sorted spiking data from
micro electrodes in real time. Of these three algorithms, only OSort
is online, which means that it processes spikes one-by-one as they
come. For the other two algorithms, the whole spike sorting process
needs to be re-run with all previous data to cluster the new spikes,
so they are more targeted for offline analysis when new spikes are
not coming in. Even for large-scale offline analysis, it would be good
to know the computational demand of the algorithms.

Ten very long signals (960 s) with noise level 0.15 were used
for evaluating the time complexity of each algorithm. The 960 s
signals were cut into shorter signals, with the number of spikes
varying from 100 to 19,460. The parameters for each spike sorting
algorithm were optimized on the first part (1400 spikes) of each
960 s signal, and remained unchanged for all the other parts orig-
inating from this signal. As only the speed of the algorithms was
measured and not their actual accuracy, parameter optimization of

each individual signal part was unnecessary.

The results of the speed test are shown in Fig. 9. OSort was  the
fastest algorithm, with an average speed of 1100 spikes/s, whereas
the average speed for KlustaKwik and WaveClus was 200 and 100
spikes/s respectively.
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lgorithms to run. Long JW signals (960 s, noise level 0.15) cut into several parts
ere used. The parameters were optimized using the first signal segment with 1400

pikes and remained the same for all other segments.

. Conclusion

Three widely-used publicly-available spike sorting algorithms
ere compared (WaveClus, KlustaKwik, OSort) with regard to their
arameter settings, using single-channel artificial data with dif-
erent noise levels and different number of neurons. To avoid
iased results, an optimization technique was employed based
n Adjusted Mutual Information to find near-optimal parameter
ettings for our artificial signals. When using the near-optimal
arameters, each algorithm improved its spike sorting accuracy as
pposed to when only the default parameters were used (p < 0.01).
sing these settings, an objective comparison of the three algo-

ithms was made.
WaveClus was the best performing spike sorting algorithm. The

ccuracy of KlustaKwik was comparable to that of WaveClus at a
ower noise level (0.00–0.15), and worse otherwise. Although OSort
erformed less well than both WaveClus and KlustaKwik, it sorted
pikes at more than five times faster, and can thus be recommended
or real-time signal processing with a low amount of noise present
below noise level 0.15). Where there is high noise (noise level
reater than 0.3), none of the three algorithms provided reasonable
esults.

As our artificial data is publicly available online, we  believe that
ur framework can be extended to further spike sorting algorithms,
hus providing an objective comparison platform for neuroscience
esearchers.
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